If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64u^2-9=0
a = 64; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·64·(-9)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*64}=\frac{-48}{128} =-3/8 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*64}=\frac{48}{128} =3/8 $
| 0.8m(m-5)=10 | | –5(–j+3)−17j=–12j | | 9b+1=10 | | 3x+x–14=18;x=8 | | x+1=(3x-2)0.6 | | s^2+30=0 | | 7x+30=94 | | a3a=4 | | 9x+1=88+180 | | (2x/x+3)=-6/x+3-2 | | q^2-40=0 | | 3/4z=15/4 | | 3(m–4)+m=2(m–6) | | (15+1)1.6=3x-2 | | |6x-10|=52 | | k^2=69 | | 2.5/18=z/36 | | 9p+3.2=-104.8 | | 9x+1=7x+3=180 | | −4(u+6)=2(3u−4) | | 1+14x=95 | | 3(n+9)=51 | | 1/2(8x^2-10x-3)=0 | | (x+1)1.6=3x-2 | | w^2+13=13 | | X-1=-7x-9 | | 3(x–5)=2x+4 | | 66x+3=111 | | 16/6=3d/18 | | −3x − 5 = 16 | | |2x+3|=33 | | N=5,n2-2n+n |